Papers



Submit a Paper!

Browse ReproHack papers

  • Revisiting the zonally asymmetric extratropical circulation of the Southern Hemisphere spring using complex empirical orthogonal functions

    Authors: Elio Campitelli, Leandro Díaz, Carolina Vera
    DOI: 10.1007/s00382-023-06780-0
    Submitted by eliocamp      
      Mean reproducibility score:   1.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    I used a lot of different tools and strategies to make this paper easily reproducible at different levels. There's Docker container for the highest level of reproducibility, and package versions are managed with renv. The data used in the paper is hosted on Zenodo to avoid long queue times when downloading from the Climate Data Store and future-proof for when it goes away and checksumed before using it.

    Tags: R Docker climate
  • What do analyses of city size distributions have in common?

    Authors: Clémentine Cottineau
    DOI: 10.1007/s11192-021-04256-8
    Submitted by clementinecottineau      
      Mean reproducibility score:   8.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This article was meant to be entirely reproducible, with the data and code published alongside the article. It is however not embedded within a container (e.g. Docker). Will it past the reproducibility test tomorrow? next year? I'm curious.

  • Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA

    Authors: Sahil Loomba, Alexandre de Figueiredo, Simon J. Piatek, Kristen de Graaf, Heidi J. Larson
    DOI: 10.1038/s41562-021-01056-1
    Submitted by samuelpawel      
      Mean reproducibility score:   7.0/10   |   Number of reviews:   4
    Why should we attempt to reproduce this paper?

    In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.

  • REMoDNaV: robust eye-movement classification for dynamic stimulation

    Authors: Asim H. Dar, Adina S. Wagner, Michael Hanke
    DOI: https://doi.org/10.3758/s13428-020-01428-x
    Submitted by adswa    
      Mean reproducibility score:   7.0/10   |   Number of reviews:   3
    Why should we attempt to reproduce this paper?

    In theory, reproducing this paper should only require a clone of a public Git repository, and the execution of a Makefile (detailed in the README of the paper repository at https://github.com/psychoinformatics-de/paper-remodnav). We've set up our paper to be dynamically generated, retrieving and installing the relevant data and software automatically, and we've even created a tutorial about it, so that others can reuse the same setup for their work. Nevertheless, we've for example never tried it out across different operating systems - who knows whether it works on Windows? We'd love to share the tips and tricks we found to work, and even more love feedback on how to improve this further.

  • The role of conidia in the dispersal of Ascochyta rabiei

    Authors: Khaliq, I., Fanning, J., Melloy, P. et al.
    DOI: 10.1007/s10658-020-02126-2
    Submitted by hub-admin    

    Why should we attempt to reproduce this paper?

    I suggested a few papers last year. I’m hoping that we’ve improved our reproducibility with this one, this year. We’ve done our best to package it up both in Docker and as an R package. I’d be curious to know what the best way to reproduce it is found to be. Working through vignettes or spinning up a Docker instance. Which is the preferred method?

    Tags: R Docker
  • pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage

    Authors: Bonaretti S, Gold GE, Beaupre GS
    DOI: 10.1371/journal.pone.0226501
    Submitted by hub-admin    
      Mean reproducibility score:   6.5/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field. Therefore, two things in the paper can be reproduced: 1) workflow results: Table 2 contains links to all the Jupyter notebooks used to calculate the results. Computations are long and might require a server, so if you want to run them locally, I recommend using only 2 or 3 images as inputs for the computations. Also, the paper should be sufficient, but if you need further introductory info, there are a documentation website: https://sbonaretti.github.io/pyKNEEr/ and a "how to" video: https://youtu.be/7WPf5KFtYi8 2) paper graphs: In the captions of figures 1, 4, and 5 you can find links to data repository, code (a Jupyter notebook), and the computational environment (binder) to fully reproduce the graph. These computations can be easily run locally and require a few seconds. All Jupyter notebooks automatically download data from Zenodo and provide dependencies, which should make reproducibility easier.

  • Growth Dynamics of Independent Gametophytes of Pleurosoriopsis makinoi ( Polypodiaceae)

    Authors: Atsushi Ebihara, Joel H. Nitta, Yurika Matsumoto, Yuri Fukazawa, Marie Kurihara, Hitomi Yokote, Kaoru Sakuma, Otowa Azakami, Yumiko Hirayama, Ryoko Imaichi
    Submitted by joelnitta    
      Mean reproducibility score:   10.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    It uses the drake R package that should make reproducibility of R projects much easier (just run make.R and you're done). However, it does depend on very specific package versions, which are provided by the accompanying docker image.

    Tags: R Docker Drake
  • Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean (Phaseolus vulgaris) in the United States

    Authors: Kamvar ZN, Amaradasa BS, Jhala R, McCoy S, Steadman JR, Everhart SE
    DOI: 10.7717/peerj.4152
    Submitted by hub-admin    
      Mean reproducibility score:   6.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper is reproduced weekly in a docker container on continuous integration, but it is also set up to work via local installs as well. It would be interesting to see if it's reproducible with a human operator who knows nothing of the project or toolchain.

    Tags: R make Docker

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome